
Elastic constants and volume changes associated with two high-pressure rhombohedral phase
transformations in vanadium

Byeongchan Lee
Department of Mechanical Engineering, Kyung Hee University, Yongin, Republic of Korea and Lawrence Livermore National

Laboratory, Livermore, California 94551, USA

Robert E. Rudd,* John E. Klepeis, and Richard Becker
Lawrence Livermore National Laboratory, Livermore, California 94551, USA

�Received 19 October 2007; revised manuscript received 4 March 2008; published 9 April 2008�

We present results from ab initio calculations of the mechanical properties of the rhombohedral phase ��� of
vanadium metal reported in recent experiments, and other predicted high-pressure phases �� and bcc�, focusing
on properties relevant to dynamic experiments. We find that the volume change associated with these transi-
tions is small: no more than 0.15% �for �-��. Calculations of the single crystal and polycrystal elastic moduli
�stress-strain coefficients� reveal a remarkably small discontinuity in the shear modulus and other elastic
properties across the phase transitions even at zero temperature where the transitions are first order.
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I. INTRODUCTION

The existence of a high-pressure rhombohedral phase of
pure crystalline vanadium has been the focus of an intense
research effort recently. The first indication of a phase tran-
sition came from the theoretical observation that the C44
shear modulus of bcc vanadium decreases and becomes
negative at pressures greater than �1.3 Mbar,1,2 pressures
that are experimentally accessible. A negative shear modulus
means that the material is mechanically unstable under trigo-
nal �prismatic� shear, suggesting a phase transition. At that
time, the experimental evidence showed no phase transition
up to 1.54 Mbar.3 Then recently, Ding et al.4 conducted
x-ray diffraction experiments in the diamond anvil cell
�DAC� up to 1.5 Mbar and found features in the diffraction
peaks that were consistent with a second-order phase trans-

formation to a rhombohedral structure with an R3̄m point
group symmetry at pressures above 0.69 Mbar. It was soon
confirmed that density functional theory �DFT� finds the
rhombohedral phase to be the ground state at zero tempera-
ture and pressures above 0.8 Mbar, which is in reasonably
good agreement with experiment.5 In fact, it was shown that
DFT predicts additional phase transformations that had not
been found in experiment, i.e., a first-order transformation to
a different rhombohedral structure at 1.2 Mbar and a third
transformation back to the bcc structure at 2.8 Mbar.5 The
prediction of the existence of the two high-pressure phase
transformations has been supported further by DFT phonon
calculations.6

Alternative techniques may provide the pressures needed
to observe the second rhombohedral phase and the reentrant
bcc phase. Dynamic experiments do not rely on the mechani-
cal integrity of anvils and are able to reach multimegabar
pressures. They have been used to study similar transforma-
tions such as the diffusionless �-� transition in iron.7 There
are several challenges specific to vanadium, however. The
softening of the shear modulus and the rhombohedral phase
transition are related to subtle electronic effects,2 which are
likely to be weakened by increased temperature. Recent

ramp wave techniques based on Z,8 laser,9,10 and graded-
density impactor11 drives are able to generate high pressure
without the entropy generation of shockwave techniques and
are, therefore, preferable in the present context. Another
challenge is that the subtle rhombohedral distortion ��1° �
detected by x-ray diffraction in the DAC is probably too
small for in situ x-ray diffraction in dynamic experiments.12

Indirect techniques are an alternative to detect the transition.
For example, Velocity Interferometer System for Any Reflec-
tor �VISAR� free-surface velocity measurements can detect
changes in the density due to a volume change, and they can
be used to infer the longitudinal stress and, hence, the change
in strength if the equation of state is known.10,13 Rayleigh–
Taylor growth rate is another way to probe strength.9

In this paper, we use DFT to make predictions about the
properties of high-pressure vanadium relevant to dynamic
experiments. We compute the magnitude of the volume
change associated with the three phase transitions related to
the rhombohedral structure in Sec. III. We also compute the
elastic properties and calculate bounds on, and an explicit
estimate of, the polycrystalline shear modulus in Secs. IV
and V, respectively. Since the strength is typically assumed
to vary with the shear modulus,14 any anomalies in the shear
modulus are likely to provide a signature in the VISAR trace.
Indeed, an important motivation for the present work is to
assess whether the bcc shear modulus C44 going to zero is
likely to produce a strong signature. The shear modulus also
affects defect energetics and may have a measurable effect
on transition kinetics. We consider the implications of our
results for dynamic experiments to detect the high-pressure
phases.

II. THEORETICAL BACKGROUND

The rhombohedral crystal structure of vanadium at high
pressure results from a slight distortion of the bcc structure.
Specifically, the distortion is a uniaxial strain along �111�,
which remains a threefold symmetry axis of the crystal. This
structure is known as the �−Po structure �Strukturbericht Ai,
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Pearson hR1�. It still has a single atom per unit cell, so the
rhombohedral transition may be expected to be diffusionless
�martensitic� and likely rapid despite the small energy differ-
ence. There are four independent threefold axes, so there are
four variants of the rhombohedral crystal that are degenerate
in energy.

The ground state of the single-crystal rhombohedral phase
has been determined from first principles using a volume-
conserving rhombohedral shear path,5

T��� = �k � �

� k �

� � k
� �1�

in the usual bcc crystal frame, where k is determined from
the real positive solution of det�T�=1 to ensure constant vol-
ume. The approach is to use DFT in combination with a
gradient-corrected exchange and correlation energy
functional15 as implemented in the Vienna ab initio simula-
tion package �VASP� code along with the projector
augmented-wave �PAW� method.16 Specifically, the PAW po-
tentials with 13 valence electrons �3s, 3p, 3d, and 4s states�
are used. The plane wave cutoff energy is 66.15 Ry and an
unshifted 60�60�60 uniform mesh is used for the k-point
sampling: this results in 5216 and 18 941 k points in the
irreducible Brillouin zone of the unstrained bcc and rhombo-
hedral lattices, and up to 18 941 and 54 932 k points for the
strained bcc and rhombohedral lattices, respectively. For all
of the calculations, we use a primitive cell.

III. VOLUME CHANGE DUE TO TRANSFORMATION

In Ref. 5, we calculated the enthalpy and pressure as func-
tions of strain along the rhombohedral deformation path and
used the enthalpy to find any stable or metastable crystal
structures. We noted that the equations of state �EOS� for the
bcc and rhombohedral structures are nearly identical, so their
bulk moduli are essentially equal �differing by no more than
3%�, and reported the EOS of the ground state up to 2 Mbar.
We now use those data together with additional data on the
EOS of the metastable structures to calculate the volume
change associated with the phase transformations in a readily
accessible form.

By using the EOS Pi�V� for the stable and metastable
structures �i=bcc ,� ,��, we have calculated the associated
volume change 	V according to

Pj�Vi + 	V� = Pi�Vi� �2�

for pairs of structures i and j. In practice, we have calculated
the pressure at a set of volumes and used piecewise quadratic
interpolation to solve the equal pressure condition �2� be-
tween those points, equivalent to the common tangent con-
struction at the phase boundaries. The EOS data are tabulated
in Table I. A comparison of the ground-state equation of state
with experimental data4 was presented in Fig. 3. of Ref. 5.
The theoretical equation of state values compare well with
the experimental data, with perhaps a very slight overbinding
in the generalized gradient approximation. The relative vol-
ume change with respect to the bcc phase, 	V /Vbcc, is plot-
ted in Fig. 1.

In principle, there is a volume change during the transfor-
mation from bcc ��� to the first rhombohedral phase ���, a
second volume change associated with the transformation to
the second rhombohedral phase ���, and a third volume
change associated with the transformation back to bcc ��� at
high pressure. There is no path connecting � and � that pre-
serves the point group, so they must be distinct phases; the
two bcc regions appear to be connected at finite

TABLE I. Equations of state for the bcc, �, and � phases and
metastable structures. Pressures are in Mbar and volumes are in
units of the ambient volume Vo=13.518 Å3.

Volume

Pressure

bcc � �

1.000 0.000

0.831 0.479

0.804 0.596

0.779 0.726 0.724

0.759 0.840 0.838

0.754 0.870 0.869

0.729 1.031 1.030

0.717 1.118 1.117 1.110

0.707 1.191 1.190 1.183

0.705 1.210 1.209 1.202

0.681 1.408 1.407 1.399

0.659 1.627 1.627 1.620

0.636 1.869 1.870 1.866

0.614 2.136 2.138 2.140

0.593 2.430 2.433 2.445

0.588 2.494 2.510

0.572 2.769 2.782

0.568 2.841 2.852

0.551 3.149
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FIG. 1. �Color online� The volumetric strain 	V /V of the
ground state of single-crystal vanadium at zero temperature with
respect to that of the bcc structure. Dashed lines correspond to three
volume changes associated with three phase transitions. The light
�dark� gray area represents the pressure range in which the � ���
phase is the ground state. The bcc phase is stable in the other
regions.
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temperature.2 In practice, the kinetics of the transformation
may cause the transformation to be overdriven so that the
initial phase is retained in a metastable state past the phase
boundary until the new phase has a chance to nucleate and
grow. For this reason, it is interesting to examine the entire
curve in Fig. 1, and not just the values in between the equi-
librium phase boundaries.

In each case, the initial 	V is a volume change, so the
volume is reduced following the transition. The volume
change associated with the bcc to � transformation is small:
0.03% or less in magnitude. It would not be easy to detect
such a small change in a dynamic experiment. The magni-
tude of the volume change associated with the second trans-
formation is larger: about 0.15% for the � to � transforma-
tion at 1.2 Mbar. The volume change would be about the
same if bcc were retained to a pressure of �1.2 Mbar and
then transformed directly to �. However, if the bcc or �
phase persists to higher pressures, the volume change be-
comes progressively smaller and eventually changes sign,
becoming a volume expansion near 2 Mbar. The final tran-
sition back to bcc again has a change of over 0.1% in mag-
nitude. So the � to � transformation has the strongest signa-
ture in terms of volume change, but it may not be large
enough to detect.

IV. SINGLE-CRYSTAL ELASTIC MODULI

We next consider how the single-crystal elastic moduli
change with pressure. Specifically, we calculate Bijkl�P�, the
elastic moduli with respect to a shear-stress-free reference
state at pressure P �either the bcc or rhombohedral structure,
as specified�. The Bijkl are often called the stress-strain coef-
ficients, as we do below.17 They are directly related to sound
velocities at high pressure. Bijkl can be obtained from the
deformation paths used for an orthorhombic lattice18 or for a
trigonal lattice,19 and the details are given in the Appendix.

The six independent stress-strain coefficients, B11, B33,
B12, B13, B44, and B24 �here, given in Voigt notation in the

rhombohedral frame with directions �1̄10	bcc, �1̄1̄2	bcc and
�111	bcc as 1, 2, and 3, respectively�, are plotted in Fig. 2�a�.
They are discontinuous at the first-order phase transitions;
however, within the domain of each stable phase, most of the
stress-strain coefficients monotonically increase with pres-
sure. The exception is B33 near the � to the reentrant bcc
phase boundary �roughly 2.8 Mbar�. Since B33 is associated
with uniaxial strain along the threefold axis, its anomalous
behavior is suggestive, but a better presentation is needed to
separate the effects of shear and compression.

Indeed, there is a remarkable approximate continuity of
the elastic properties across the phase transitions that is not
readily apparent from the elements of Bijkl. The bulk modu-
lus of the rhombohedral phases is within 3% of that of the
bcc structure, as we already discussed. The eigenvalues of
the 9�9 matrix B�ij��kl� provide a description of the elasticity
that is less coordinate dependent, but there is a technical
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FIG. 3. �Color online� The polycrystalline shear modulus as a
function of pressure, along with the Voigt and Reuss bounds for
bcc, �, and �. This shear modulus is based on the stress-strain
coefficients Bijkl of the single-crystal structure �see Fig. 2�a�	 and
calculated from the virtual test sample with a random grain orien-
tation shown in color �inset�.
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FIG. 2. �Color online� The elastic moduli �specifically, the stress-strain coefficients� of the ground-state single-crystal structure as a
function of pressure. �a� Bijkl written in Voigt notation in the frame of the primitive rhombohedral cell. �b� The corresponding eigenvalues
of the 9�9 stress-strain coefficient matrix Bijkl �see text�. In the rhombohedral phase, there are six independent elastic moduli �stress-strain
coefficients� �vs three for bcc� �Ref. 17� and three independent shear eigenvalues for vanadium metal �dashed curves represent doubly
degenerate eigenvalues�. The anisotropy ratio A−1 is also plotted, showing an extreme value just below the �-bcc transition.
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issue. In the rhombohedral phase, shear and compression are
mixed in the sense that a nonequiaxed strain is required to
produce a purely hydrostatic pressure, and the tetragonal
strains to produce hydrostatic pressure and pure shear are not
orthogonal. To eliminate any ambiguity, we restrict to the
space of constant volume strains by using a projection matrix

�ij��kl�=��ij��kl�−

1
3�ij�kl. Then the 9�9 matrix 
B
 /2 has

five nontrivial eigenvalues, corresponding to different shear
moduli. This matrix is closely related to von Mises stresses.

The eigenvalues are plotted in Fig. 2�b�. The top curve
represents two degenerate eigenvalues that are equal to B�
= �B11−B12� /2 in the bcc phase, the usual shear modulus for
tetragonal shear in the cubic crystal. It is quite smooth. The
remaining three eigenvalues are degenerate in the bcc phase
and equal to B44, which is the shear modulus for trigonal
shear in the cubic crystal �not to be confused with the B44 in

the rhombohedral frame�. In the rhombohedral phases, two
of these eigenvalues remain degenerate, but one splits off.
That single eigenvalue represents a pure shear corresponding
to the rhombohedral deformation. Its value is �B11+2B33
+B12−4B13� /6, which decreases toward zero as the pressure
in the rhombohedral phases approaches the bcc phase bound-
ary. This decrease is most pronounced approaching the high-
pressure reentrant bcc phase �2.8 Mbar�, but it is present at
both. In the energy curves, it is clear that the width of the
rhombohedral well broadens with the change in pressure as it
rises above the bcc well and quickly becomes unstable. By
the same token, the single eigenvalue reaches its maximum
at 1.87 Mbar, which is the pressure at which the rhombohe-
dral well is deepest and most stable against the bcc phase.
The eigenvalues can also be used to study the elastic aniso-
tropy of the crystal. The anisotropy ratio �A=B44 /B� in bcc�

TABLE II. Deformation gradients for the six independent stress-strain coefficients in the rhombohedral
lattice and the corresponding strain energy relations per unit volume at pressure P.

Stress-strain coefficient Deformation gradient Strain energy

B11

T��� = �1 + � 0 0

0 1 0

0 0 1
�

u�� , P�=−P�+ 1
2B11�2

B33

T��� = �1 0 0

0 1 0

0 0 1 + �
�

u�� , P�=−P�+ 1
2B33�2

B12 �and B66�

T��� =�
1 + � 0 0

0 1 − � 0

0 0
1

1 − �2
�

u���= �B11−B12��2=2B66�2

B13

T��� = �1 + � 0 0

0 1 + � 0

0 0 1 + �
�

u�� , P�=−3P��+�2�+ 1
2 �2B11+B33+2B12+4B13��2

B44

T��� =�
1

1 − �2 0 0

0 1 �

0 � 1
�

u���=2B44�2

B24 �−B14�

T��� =�
1 + � 0 0

0 1 − � �

0 0
1

1 − �2
�

u���= 1
2 �2B11−2B12+B44−4B24��2
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has been calculated for all four phases from the ratio of the
smallest and largest eigenvalues. For an isotropic material,
A=1; for vanadium, 1 /A is never less than its ambient value,
fluctuates throughout the entire pressure range studied, and
becomes extremely high near the �-bcc boundary �A
�1 /130�. For comparison, the most anisotropic cubic tran-
sition metal at ambient conditions is copper20 with A=3.21,
and among all cubic elements, recent calculations found for
polonium A=1 /6–1 /18 at T=0 K.21

V. POLYCRYSTALLINE SHEAR MODULI

Polycrystalline vanadium without texture has isotropic
mechanical behavior, which is described by just two inde-
pendent elastic moduli: the bulk modulus K and the shear
modulus G. Regardless of phase, K is within 3% of that of
the bcc structure as mentioned earlier. By using the single-
crystal Bijkl, G may be bounded by the Voigt and Reuss ap-
proximations of constant strain and constant stress,
respectively.22 Since dynamic experiments conducted at
Z-pinch and laser facilities often use thin-film targets with
microstructures that can vary from columnar to equiaxed de-
pending on how they are processed, the Voigt and Reuss
bounds are helpful in assessing the range of possible re-
sponses. In calculating the Voigt and Reuss bounds shown in
Fig. 3 �as well as the explicit polycrystalline calculations
below�, we assume that the deformations are infinitessimal.
With the low energy barriers, switching between variants of
the rhombohedral phase may contribute to the strain with no
cost in stored elastic energy, leading to a reduction in the
shear modulus. At larger strains, the response to rhombohe-
dral strains stiffens anharmonically. Both of these effects
have been neglected. The homogenized shear modulus in the
rhombohedral phase is positive, indicating mechanical stabil-
ity. The variation in the Voigt–Reuss difference results from
the changing crystalline anisotropy.

In the case of a microstructure with more equiaxed grains,
we calculate the polycrystalline shear modulus by homog-

enizing the single-crystal Bijkl of the ground-state structure at
each pressure using a virtual test sample �VTS�.23 The pro-
cedure in Ref. 23 has been repeated: the VTS is strained in
six pure shear modes ��12, �23, �31, �11–�22, �22–�33, and
�33–�11� and the results from six calculations are averaged to
reduce the effects of anisotropy. The isotropic average shear
modulus �GVTS� plotted in Fig. 3 has been obtained by equat-
ing the calculated elastic energy per volume to an ideal elas-
tic solid at the same strain:

u = GVTS��11
2 + �22

2 + �33
2 + �12

2 + �23
2 + �31

2 � . �3�

Only one or two of the six strains are nonzero at each run,
depending on which of the six modes has been applied, and
the resulting variance in six independent runs is indicative of
the anisotropy. The overall VTS prediction lies between the
Voigt and Reuss bounds, and the VTS values are within 5%
of the Voigt–Reuss–Hill average24 except at the reentrant bcc
phase boundary, where the VTS value is 31% greater. The
Voigt–Reuss difference at this phase boundary is quite large:
1.34 Mbar. The constant-stress Reuss average is sensitive to
the most compliant orientation, whereas the Voigt average is
fairly insensitive; the VTS shear modulus is closer to the
Voigt value. It significantly decreases at this point of high
anisotropy and may lead to an anomalous dynamic response.

VI. CONCLUSION

We have investigated the properties relevant to dynamic
experiments for two high-pressure rhombohedral phases in
vanadium metal. It will be challenging for dynamic experi-
ments to detect the rhombohedral phase unambiguously. The
distortion is probably too small for in situ x-ray diffraction,
although it might be large enough in �.5 We have predicted
that the volume change associated with any phase transfor-
mation up to 3.15 Mbar is small and may not have a clear
signature in the VISAR trace. We have also predicted values
for the single-crystal and polycrystalline stress-strain coeffi-

TABLE III. Calculated stress-strain coefficients and various polycrystalline shear modulus predictions for the stable phase. All quantities
are in units of Mbar except that volume has been scaled by the ambient volume Vo=13.518 Å3.

Stable
phase

Volume
�V /Vo�

Pressure
�P�

Bulk
modulus �K�

Single-crystal stress-strain coefficients Polycrystalline

B11 B33 B12 B13 B44 B24 VTS Voigt Reuss

bcc 1 0.00 1.82 2.30 2.18 1.52 1.64 0.51 0.18 0.39 0.41 0.35

0.779 0.73 4.21 4.79 4.44 3.74 4.09 0.87 0.49 0.43 0.59 0.27

� 0.754 0.87 4.63 5.52 5.00 3.96 4.43 0.75 0.57 0.51 0.67 0.33

0.729 1.03 5.09 6.00 5.63 4.42 4.84 0.77 0.65 0.50 0.70 0.25

� 0.705 1.20 5.59 6.17 6.53 5.16 5.27 1.29 0.46 0.69 0.83 0.50

0.659 1.62 6.77 7.87 7.89 6.19 6.23 1.61 0.52 1.03 1.14 0.87

0.636 1.87 7.45 8.79 8.58 6.73 6.85 1.81 0.57 1.19 1.31 1.04

0.593 2.45 9.02 10.81 9.85 8.11 8.38 2.21 0.70 1.43 1.60 1.24

0.572 2.78 10.09 11.56 9.72 9.03 9.97 2.29 0.91 0.99 1.43 0.09

bcc 0.568 2.84 10.15 11.48 10.64 9.07 9.91 2.04 1.19 0.92 1.37 0.56

0.551 3.15 10.99 12.71 11.84 9.70 10.56 2.37 1.22 1.29 1.68 0.94
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cients in the rhombohedral phases at zero temperature. The �
and � phases smoothly cut off the negative values of the bcc
B44. The first-order transitions between the bcc and rhombo-
hedral phases give remarkably small changes in the stress-
strain coefficients, as evident from the plots of the shear
modulus and the stress-strain matrix eigenvalues, apart from
near the �-bcc transition, where the crystal is highly aniso-
tropic.

The results here were obtained by using DFT at zero tem-
perature for pure vanadium. Since the phase transition is
driven by rather subtle electronic structure effects, the elastic
constants may be substantially affected by changes in tem-
perature or impurities.2,5,25 It would be interesting to see
whether the remarkable continuity of the moduli persists as
the phase boundaries and the relative stiffness of the bcc and
rhombohedral structures change.
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APPENDIX: CALCULATION OF STRESS-STRAIN
COEFFICIENTS IN THE RHOMBOHEDRAL LATTICE

The high-pressure stress-strain coefficients Bijkl can be
obtained in many different ways, but in Table II, we summa-
rize the deformation gradients and the corresponding strain
energy relations that we used to calculate Bijkl here. The
pressure term is involved in some of the strain energy rela-
tions, for which the deformation gradients are not volume
conserving. The stress-strain coefficients Bijkl�P� are equal to
Cijkl when the pressure vanishes, as explained in detail in
Chap. 2 of Ref. 17. For a recent discussion of the stress-
strain coefficients Bijkl, see Ref. 26. For P�0, the relation
is17

Bijkl = − P�� jl�ik + �il� jk − �ij�kl� + Cijkl. �A1�

The resulting stress-strain coefficients along with the calcu-
lated polycrystalline shear moduli are tabulated in Table III.
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